# tf.keras.losses.SquaredHinge

View source

## Class `SquaredHinge`

Computes the squared hinge loss between `y_true` and `y_pred`.

### Aliases:

• Class `tf.compat.v1.keras.losses.SquaredHinge`
• Class `tf.compat.v2.keras.losses.SquaredHinge`
• Class `tf.compat.v2.losses.SquaredHinge`
• Class `tf.losses.SquaredHinge`

`loss = square(maximum(1 - y_true * y_pred, 0))`

`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.

#### Usage:

``````sh = tf.keras.losses.SquaredHinge()
loss = sh([-1., 1., 1.], [0.6, -0.7, -0.5])

# loss = (max(0, 1 - y_true * y_pred))^2 = [1.6^2 + 1.7^2 + 1.5^2] / 3

print('Loss: ', loss.numpy())  # Loss: 2.566666
``````

Usage with the `compile` API:

``````model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.SquaredHinge())
``````

## `__init__`

View source

``````__init__(
reduction=losses_utils.ReductionV2.AUTO,
name='squared_hinge'
)
``````

Initialize self. See help(type(self)) for accurate signature.

## Methods

### `__call__`

View source

``````__call__(
y_true,
y_pred,
sample_weight=None
)
``````

Invokes the `Loss` instance.

#### Args:

• `y_true`: Ground truth values. shape = `[batch_size, d0, .. dN]`
• `y_pred`: The predicted values. shape = `[batch_size, d0, .. dN]`
• `sample_weight`: Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.)

#### Returns:

Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.)

#### Raises:

• `ValueError`: If the shape of `sample_weight` is invalid.

### `from_config`

View source

``````from_config(
cls,
config
)
``````

Instantiates a `Loss` from its config (output of `get_config()`).

#### Args:

• `config`: Output of `get_config()`.

#### Returns:

A `Loss` instance.

### `get_config`

View source

``````get_config()
``````