tf.keras.optimizers.schedules.InverseTimeDecay

View source

Class InverseTimeDecay

A LearningRateSchedule that uses an inverse time decay schedule.

Inherits From: LearningRateSchedule

Aliases:

  • Class tf.compat.v1.keras.optimizers.schedules.InverseTimeDecay
  • Class tf.compat.v2.keras.optimizers.schedules.InverseTimeDecay
  • Class tf.compat.v2.optimizers.schedules.InverseTimeDecay
  • Class tf.optimizers.schedules.InverseTimeDecay

__init__

View source

__init__(
    initial_learning_rate,
    decay_steps,
    decay_rate,
    staircase=False,
    name=None
)

Applies inverse time decay to the initial learning rate.

When training a model, it is often recommended to lower the learning rate as the training progresses. This schedule applies the inverse decay function to an optimizer step, given a provided initial learning rate. It requires a step value to compute the decayed learning rate. You can just pass a TensorFlow variable that you increment at each training step.

The schedule a 1-arg callable that produces a decayed learning rate when passed the current optimizer step. This can be useful for changing the learning rate value across different invocations of optimizer functions. It is computed as:

def decayed_learning_rate(step):
  return initial_learning_rate / (1 + decay_rate * step / decay_step)

or, if staircase is True, as:

def decayed_learning_rate(step):
  return initial_learning_rate / (1 + decay_rate * floor(step / decay_step))

You can pass this schedule directly into a tf.keras.optimizers.Optimizer as the learning rate. Example: Fit a Keras model when decaying 1/t with a rate of 0.5:

...
initial_learning_rate = 0.1
decay_steps = 1.0
decay_rate = 0.5
learning_rate_fn = keras.optimizers.schedules.InverseTimeDecay(
  initial_learning_rate, decay_steps, decay_rate)

model.compile(optimizer=tf.keras.optimizers.SGD(
                  learning_rate=learning_rate_fn),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(data, labels, epochs=5)

Args:

  • initial_learning_rate: A scalar float32 or float64 Tensor or a Python number. The initial learning rate.
  • decay_steps: How often to apply decay.
  • decay_rate: A Python number. The decay rate.
  • staircase: Whether to apply decay in a discrete staircase, as opposed to continuous, fashion.
  • name: String. Optional name of the operation. Defaults to 'InverseTimeDecay'.

Returns:

A 1-arg callable learning rate schedule that takes the current optimizer step and outputs the decayed learning rate, a scalar Tensor of the same type as initial_learning_rate.

Methods

__call__

View source

__call__(step)

Call self as a function.

from_config

View source

from_config(
    cls,
    config
)

Instantiates a LearningRateSchedule from its config.

Args:

  • config: Output of get_config().

Returns:

A LearningRateSchedule instance.

get_config

View source

get_config()

results matching ""

    No results matching ""